In Python, you can count the number of missing values (NaN or null values) in a Pandas dataframe using the isna() method to create a boolean mask and then using the sum() method to count the number of True values.
Here's an example:
import pandas as pd# create a sample dataframe with missing valuesdata = {'name': ['John', 'Jane', 'Mike', 'Susan'], 'age': [30, None, None, 40], 'gender': ['M', 'F', None, 'F']}df = pd.DataFrame(data)# count the number of missing values in the dataframemissing_values_count = df.isna().sum().sum()print("Number of missing values in the dataframe:", missing_values_count) |
This will output:
Number of missing values in the dataframe: 3 |
In this example, we have a total of 3 missing values in the age and gender columns of the dataframe.