In Python, you can detect missing values (also known as NaN or null values) in various data structures such as NumPy arrays, Pandas dataframes, and Python lists.
Here's an example of how to detect missing values in a Pandas dataframe:
import pandas as pd# create a sample dataframe with missing valuesdata = {'name': ['John', 'Jane', 'Mike', 'Susan'], 'age': [30, 25, None, 40], 'gender': ['M', 'F', None, 'F']}df = pd.DataFrame(data)# check for missing values in the dataframeprint(df.isnull()) |
This will output a boolean dataframe with True values where the corresponding element is missing:
name age gender0 False False False1 False False False2 False True True3 False False False |
You can also check the total number of missing values in each column of the dataframe using the sum() method:
print(df.isnull().sum()) |
This will output:
name 0age 1gender 1dtype: int64 |
Here, we can see that the age and gender columns have one missing value each.