In addition to the standard datetime methods, Pandas provides several additional datetime-specific methods. Here are some of the commonly used ones:

  1. dt.floor(freq): Rounds down the datetime to the specified frequency.

  2. dt.ceil(freq): Rounds up the datetime to the specified frequency.

  3. dt.to_period(freq): Converts the datetime to a Period object with the specified frequency.

  4. dt.to_pydatetime(): Converts the datetime to a Python datetime object.

  5. dt.strftime(format): Formats the datetime as a string using the specified format string.

  6. dt.round(freq): Rounds the datetime to the specified frequency.

  7. dt.tz_localize(tz, ambiguous, nonexistent): Localizes a datetime to a specified timezone.

  8. dt.tz_convert(tz): Converts the timezone of a datetime to a new timezone.

  9. dt.day_name(): Returns the name of the day of the week.

  10. dt.month_name(): Returns the name of the month.

  11. dt.is_month_start: Returns a boolean indicating whether the datetime is the start of a month.

  12. dt.is_month_end: Returns a boolean indicating whether the datetime is the end of a month.

  13. dt.is_year_start: Returns a boolean indicating whether the datetime is the start of a year.

  14. dt.is_year_end: Returns a boolean indicating whether the datetime is the end of a year.

These additional methods can be very useful for working with datetime data in Pandas, as they provide additional flexibility and functionality beyond the standard datetime methods.